P-Values for Multiple Testing Procedures

Dissertation Defense

by: Joshua D. Habiger Major Professor: Dr. Edsel Peña

> Committee members: Dr. Don Edwards Dr. John Grego Dr. Joshua Tebbs Dr. Hongmei Zhang

Department of Statistics University South Carolina May 26, 2010

・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Motivation
- Randomized P-Values for MTPs
- Compound P-Values for MTPs
- Concluding Remarks

<日

<日</p>

A Quick Analysis Problems with analysis Multiple Testing Procedures

Timmons et. al [2007] data

- *x_{mj}* = brown fat cell expression measurement for gene *m* on *j*th microarray
- y_{mk} = white fat cell expression measurement for gene m on kth microarray

m	x _{m1}	x _{m2}		x _{m5}	y _{m1}	У _{m2}		У т8
1	1.22	1.66		2.33	5.64			4.05
2	3.57	19.22		11.89	5.17	29.49		11.26
÷	÷	÷	·	:		-	·	:
12488	2.52	10.91		22.67	10.70	7.35		12.81

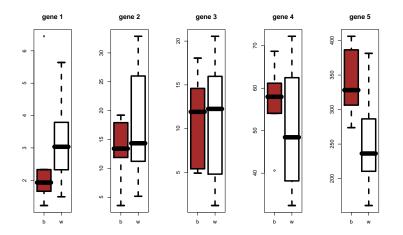
Goal: compare brown fat cell measurements to white for each gene

・ロト ・四ト ・ヨト ・ヨト

э

Randomized P-Value Statistics for MTPs Compound *P*-value Statistics for MTPs Concluding Remarks A Quick Analysis Problems with analysis Multiple Testing Procedures

Boxplots for 5 genes



< @ >

→ E → < E →</p>

E

Randomized P-Value Statistics for MTPs Compound *P*-value Statistics for MTPs Concluding Remarks A Quick Analysis Problems with analysis Multiple Testing Procedures

Model and Hypotheses

Model:

$$X_{m1}, X_{m2}, ..., X_{m5} \stackrel{i.i.d.}{\sim} F_m(\cdot)$$

$$Y_{m1}, Y_{m2}, ..., Y_{m8} \stackrel{i.i.d.}{\sim} F_m(\cdot - \theta_m)$$

Hypotheses:

$$m{H}_{m0}: m{ heta}_m = m{0}, m{F}_m \in \mathcal{F}^{NORM}$$
 vs. $m{H}_{m1}: m{ heta}_m
eq m{0}, m{F}_m \in \mathcal{F}^{NORM}$

• $\theta_m = 0$ means gene_m not differentially expressed

• $\theta_m \neq 0$ means gene_m is differentially expressed

・ロト ・四ト ・ヨト ・ヨト

Randomized P-Value Statistics for MTPs Compound *P*-value Statistics for MTPs Concluding Remarks A Quick Analysis Problems with analysis Multiple Testing Procedures

Decision Functions

Test statistics

$$T(\boldsymbol{x}_m, \boldsymbol{y}_m) = \frac{\bar{\boldsymbol{x}}_m - \bar{\boldsymbol{y}}_m}{S_{pm}\sqrt{\frac{1}{5} + \frac{1}{8}}}$$

$$P_{T_m}(\boldsymbol{x}_m, \boldsymbol{y}_m) = 2[1 - \mathcal{T}_{11}(|T(\boldsymbol{x}_m, \boldsymbol{y}_m)|)]$$

Decision Function

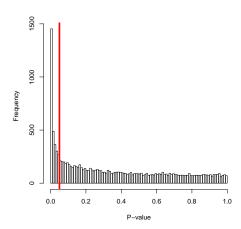
$$\delta_{\boldsymbol{\rho}}(\boldsymbol{x}_m, \boldsymbol{y}_m; \alpha) = I(\boldsymbol{P}_{T_m}(\boldsymbol{x}_m, \boldsymbol{y}_m) \leq \alpha)$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Э

Randomized P-Value Statistics for MTPs Compound *P*-value Statistics for MTPs Concluding Remarks A Quick Analysis Problems with analysis Multiple Testing Procedures

Testing with P-values



$\alpha = .05$ allows for 2879 "DISCOVERIES"...!!! $_{\circ ?}$

э

Randomized P-Value Statistics for MTPs Compound *P*-value Statistics for MTPs Concluding Remarks A Quick Analysis Problems with analysis Multiple Testing Procedures

A closer look

- All *H*_{m0} true => expect 624 False Discoveries!
- Consequences
 - Time (and grant money !?!) wasted
- Solutions: Control global error rate

•
$$FDR = E\left[\frac{\#FD}{\max\{1,\#D\}}\right]$$

• . . . and many more

・ 戸 ト ・ ヨ ト ・ ヨ ト

Randomized P-Value Statistics for MTPs Compound *P*-value Statistics for MTPs Concluding Remarks A Quick Analysis Problems with analysis Multiple Testing Procedures

P-Value based MTPs

• Let
$$P = (P_1, P_2, ..., P_M)$$
 be *P*-values for testing $H_{10}, H_{20}, ..., H_{M0}$

• Define a *P*-value based MTP by

$$oldsymbol{\delta} : [0,1]^M o \{0,1\}^M$$

where $oldsymbol{\delta}(oldsymbol{P}) = (\delta_1(oldsymbol{P}), \delta_2(oldsymbol{P}), ..., \delta_M(oldsymbol{P}))$

・ロト ・四ト ・ヨト ・ヨト

Э

A Quick Analysis Problems with analysis Multiple Testing Procedures

Examples

- Let $P_{(1)} \leq P_{(2)} \leq ... \leq P_{(M)}$ be ordered *P*-values
- Sequential Sidak (Duduit and van der Laan [2008])
 - $\delta_m(\boldsymbol{P}; \alpha) = I\left(P_m \leq 1 (1 \alpha)^{\frac{1}{M-k+1}}\right)$, where

$$k \equiv k(\mathbf{P}) = \max\left\{m : \mathbf{P}_{(j)} \leq 1 - (1 - \alpha)^{\frac{1}{M-j+1}}, \forall j \leq m\right\}$$

- Benjamini and Hochberg (1995)
 - $\delta_m(\boldsymbol{P}; \alpha) = I(\boldsymbol{P}_m \leq \boldsymbol{k\alpha}/\boldsymbol{M})$, where

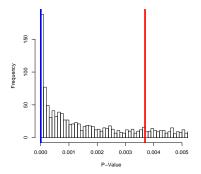
$$k \equiv k(\mathbf{P}) = \max\left\{j : \mathbf{P}_{(j)} \leq \frac{j\alpha}{M}\right\}$$

イロト イポト イヨト イヨト

э

Randomized P-Value Statistics for MTPs Compound *P*-value Statistics for MTPs Concluding Remarks A Quick Analysis Problems with analysis Multiple Testing Procedures

Application of MTPs: $\alpha = .05$



Procedure	Discoveries	Error Rate Controlled?		
BH	922	FDR		
Seq Sid	48	FWER		

Joshua D. Habiger P-Values for Multiple Testing Procedures

E

Randomized P-Value Statistics for MTPs Compound *P*-value Statistics for MTPs Concluding Remarks A Quick Analysis Problems with analysis Multiple Testing Procedures

Problems/Questions

The fine print

- Uniformity condition
- Independence condition
- *T*-test *P*-values/ Nonparametric rank based *P*-values and the fine print
- Questions
 - Could we define more *robust P*-value statistics satisfying the conditions? (relax normality assumption)
 - Could we define more *efficient P*-value statistics satisfying the conditions?

イロト イポト イヨト イヨト

Setup Result Example Application to MTPs

Randomized P-value Statistics for MTPs

<ロ> <同> <同> <同> < 同> 、

Э

Setup Result Example Application to MTPs

The Idea

- Use randomization to allow for nonparametric discrete *P*-values to be continuous
- Then *P*-values will satisfy uniformity condition and inherit robust properties

イロト イポト イヨト イヨト

Setup Result Example Application to MTPs

Data description

- Assume X ~ F, let F be a model for F and let U ~ [0, 1] be independent of X.
- Let \mathcal{F}_0 be null sub-model for F under H_0 . i.e. $H_0 : F \in \mathcal{F}_0$ and \mathcal{F}_1 an alternative sub-model
- Model example in this section
 - $X_1, X_2, ..., X_{n_1} \stackrel{i.i.d.}{\sim} F(\cdot)$ and $Y_1, Y_2, ..., Y_{n_2} \stackrel{i.i.d.}{\sim} F(\cdot \theta)$ with $\mathcal{F} = \{ \text{all continuous d.f.s} \}$

•
$$\mathcal{F}_0 = \{ \mathcal{F} \in \mathcal{F} : \theta \ge 0 \}$$
 and $\mathcal{F}_1 = \{ \mathcal{F} \in \mathcal{F} : \theta < 0 \}$

イロト イポト イヨト イヨト

Setup Result Example Application to MTPs

Valid Decision Processes

- Decision function δ(x, u; η) ∈ {0, 1} where δ = 1(0) means reject(accept) H₀
- Allowing size index η to vary, we form decision process

$$\Delta = \{\delta(\boldsymbol{X}, \boldsymbol{U}; \eta) : \eta \in [0, 1]\}$$

(also assume $t \mapsto \delta(x, u; t)$ nondecreasing and right cont. a.e. $[F] \forall F \in \mathcal{F}$)

Definition: The decision process Δ is \mathcal{F}_0 -size-valid if $\sup_{F \in \mathcal{F}_0} E_{(F,U)}[\delta(X, U; \eta)] = \eta$ for every $\eta \in [0, 1]$.

・ロト ・四ト ・ヨト ・ヨト

Setup Result Example Application to MTPs

Uniform P-Value Statistics

$$P_{\Delta}(X,U) = \inf\{\eta \in [0,1] : \delta(X,U;\eta) = 1\}$$

Definition: The *P*-value statistic $P_{\Delta}(X, U)$ is \mathcal{F}_0 -uniform if

$$\sup_{F\in\mathcal{F}_0} Pr_{(F,U)}[P_{\Delta}(X,U) \leq t] = t$$

for every $t \in [0, 1]$.

・ロト ・四ト ・ヨト ・ヨト

Э

Setup Result Example Application to MTPs

Valid vs. Uniform

Theorem: $P_{\Delta}(X, U)$ is \mathcal{F}_0 -uniform if and only if Δ is \mathcal{F}_0 -size-valid.

Proof: Show $[P_{\Delta}(X, U) \leq t] = [\delta(X, U; t) = 1]$ a.e $[F] \forall F \in \mathcal{F}$

- Use: We can usually define $\phi(\mathbf{x}; \eta) \in [0, 1]$ so that $\sup_{F \in \mathcal{F}_0} E_F[\phi(\mathbf{x}; \eta)] = \eta$.
- Then define $\delta(X, U; \eta) = I(U \le \phi(X; \eta))$ and get P_{Δ}

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Setup Result Example Application to MTPs

Randomized Wilcoxon test function

• Randomized Wilcoxon test function:

$$\phi_{WR}(\boldsymbol{x}, \boldsymbol{y}; \eta) = \begin{cases} 1 & \text{if } W(\boldsymbol{x}, \boldsymbol{y}) < k(\eta) \\ \gamma(\eta) & \text{if } W(\boldsymbol{x}, \boldsymbol{y}) = k(\eta) \\ 0 & \text{if } W(\boldsymbol{x}, \boldsymbol{y}) > k(\eta) \end{cases}$$

• $k(\eta), \gamma(\eta)$ are chosen s.t. $\sup_{F \in \mathcal{F}_0} E_F[\phi(\mathbf{x}, \mathbf{y}; \eta)] = \eta$

・ロト ・四ト ・ヨト ・ヨト

Setup Result Example Application to MTPs

Randomize Wilcoxon P-value

• Decision function:

 $\delta_{WR}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{u}; \eta) = \boldsymbol{I}[\boldsymbol{u} \leq \phi_{W}(\boldsymbol{x}, \boldsymbol{y}; \eta)]$

 $= I[W(\boldsymbol{x}, \boldsymbol{y}) < \boldsymbol{k}(\eta)] + I[\boldsymbol{u} \leq \gamma(\eta)]I[W(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{k}(\eta)]$

• *P*-value for Δ_{WR} is

 $P_{\Delta_{WR}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{u}; \eta) = \inf\{\eta \in [0, 1] : \delta_{W}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{u}; \eta) = 1\}$

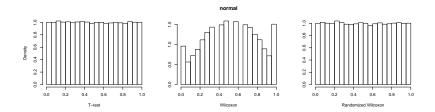
 $= \mathcal{W}_{n_1,n_2}[W(\boldsymbol{x},\boldsymbol{y})-1] + uw_{n_1,n_2}[W(\boldsymbol{x},\boldsymbol{y})]$

イロト イポト イヨト

Setup Result Example Application to MTPs

P-value distribution: F=Normal

 50,000 sets of X₁,..., X₅, Y₁,..., Y₅ ^{*i.i.d.*} ∼ F(·) are generated and Wilcoxon, randomized Wilcoxon, and *T*-test *P*-values are computed.

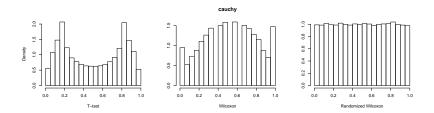


イロト イポト イヨト イヨト

Setup Result Example Application to MTPs

P-value distribution: F=Cauchy

50,000 sets of X₁,..,X₅, Y₁,..., Y₅ ^{*i.i.d.*} → F(·) are generated and Wilcoxon, randomized Wilcoxon, and *T*-test *P*-values are computed.



イロト イポト イヨト イヨト

 Motivation
 Setup

 Randomized P-Value Statistics for MTPs
 Result

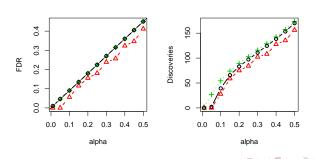
 Compound P-value Statistics for MTPs
 Example

 Concluding Remarks
 Application to MTPs

BH Procedure for F = normal

- Same data except now $\theta_1 = ... = \theta_{900} = 0$ and $\theta_{901} = ... = \theta_{1000} = 2$
- BH procedure applied at α using *P*-values from T, Wilcoxon, and Randomized Wilcoxon tests.

normal



Joshua D. Habiger *P*-Values for Multiple Testing Procedures

 Motivation
 Setup

 Randomized P-Value Statistics for MTPs
 Result

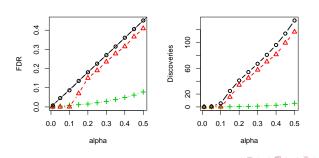
 Compound P-value Statistics for MTPs
 Example

 Concluding Remarks
 Application to MTPs

BH Procedure for F = Cauchy

- Same data except now $\theta_1 = ... = \theta_{900} = 0$ and $\theta_{901} = ... = \theta_{1000} = 2$
- BH procedure applied at α using *P*-values from T, Wilcoxon, and Randomized Wilcoxon tests.

cauchy



Setup Result Example Application to MTPs

Some Remarks

Randomized Wilcoxon *P*-value allows for valid MTPs so long as *F* continuous

- T-test P-values only valid for normal model
- Nonrandomized Wilcoxon P-values are never Uniform

What about efficiency?

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Setup and Results Sample Splitting Application

Compound P-Value Statistics for MTPs

Joshua D. Habiger *P*-Values for Multiple Testing Procedures

<ロ> <同> <同> <同> < 同> 、

Э

Setup and Results Sample Splitting Application

The idea

- So far each P-value is simple
 - i.e. if X_m is data for testing H_{m0} , then $P_{\Delta_m}(X_m)$
- What about compound P-value statistics?

• i.e. for $\boldsymbol{X} = (X_1, X_2, ..., X_M)$, compute $P_{\Delta_m}(\boldsymbol{X})$

• How can we define *compound P*-value statistics and ensure *uniform* and *independence* conditions satisfied?

イロト イポト イヨト イヨト

Setup and Results Sample Splitting Application

Data Description

• Let $X \in \mathcal{X}$ and $X \sim F$.

$$X = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1N} \\ X_{21} & X_{22} & \dots & X_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ X_{M1} & X_{M2} & \dots & X_{MN} \end{bmatrix}$$

• For $A \subseteq M = \{1, 2, ..., M\}$, $B \subseteq N = \{1, 2, ..., N\}$ denote by

$$X[\mathbf{A}, \mathbf{B}] = (X_{mn} : m \in \mathbf{A}, n \in \mathbf{B})$$

• We write $X[m,] \equiv X[\{m\}, N]$ to refer to a row *m* and X[, n] for column *n*

イロト イポト イヨト イヨト

Setup and Results Sample Splitting Application

Model

- Model: $X \sim F \in \mathcal{F}$
 - Example for this section *N* microarrays are i.i.d. according to an *M*-dimensional multivariate normal distribution

$$\mathcal{F} = \{ F : F(x) = \prod_{n \in \mathcal{N}} G(x[, n]), G = MVN(\mu_M, \Sigma_{M \times M}) \}$$

• Sub-models: $\mathcal{F}_{m0} \subseteq \mathcal{F}$ and $\mathcal{F}_{m1} \subseteq \mathcal{F}$

• Ex. mean expression level for gene *m* is 0. i.e.

$$\mathcal{F}_{m0} = \{ \boldsymbol{F} \in \mathcal{F} : \mu_m = \boldsymbol{0} \}$$

イロト イポト イヨト イヨト

э

Setup and Results Sample Splitting Application

Hypotheses

• Hypotheses

$$H_{m0}: F \in \mathcal{F}_{m0}$$
 vs. $H_{m1}: F \in \mathcal{F}_{m1}$

• Global null model/hypothesis: For $\mathcal{M}_0 \subset \mathcal{M}$,

$$H_{\mathcal{M}0}: F \in \mathcal{F}_{\mathcal{M}_0} = \cap_{m \in \mathcal{M}_0} \mathcal{F}_{m0}$$

• Ex. mean expression level for genes 1 and 2 is 0

$$H_{\mathcal{M}0}: F \in \mathcal{F}_{\mathcal{M}0} = \{F \in \mathcal{F}: \mu_1 = \mu_2 = 0\}$$

イロト イポト イヨト イヨト

Setup and Results Sample Splitting Application

Size Valid Decision Processes

To test *H_{m0}* : *F* ∈ *F_{m0}* with data *X* ∈ *X*, we have compound decision function δ_m(*X*; η_m) with compound decision process

$$\Delta_m = \{\delta_m(X; \eta_m) : \eta_m \in [0, 1]\}$$

• We have Multiple Decision Process ${oldsymbol{\Delta}}=({\Delta}_m,m\in\mathcal{M})$

Definition: Δ_m is \mathcal{F}_{m0} -size valid if

$$\sup_{F\in\mathcal{F}_{m0}}E_{F}[\delta_{m}(X;\eta_{m})]=\eta_{m}$$

イロト イポト イヨト イヨト

Setup and Results Sample Splitting Application

Uniform P-Value Statistics

Definition: *The P***-value** *statistic* generated by Δ_m is defined via

$$P_{\Delta_m}(X) = \inf \left\{ \eta_m \in [0, 1] : \delta_m(X; \eta_m) = 1 \right\}$$

Definition: $P_{\Delta_m}(X)$ is \mathcal{F}_{m0} -uniform if

$$\sup_{F\in\mathcal{F}_{m0}}\Pr(P_{\Delta_m}(X)\leq t)=t$$

for every $t \in [0, 1]$.

Theorem: $P_{\Delta_m}(X)$ is \mathcal{F}_{m0} -uniform iff Δ_m is \mathcal{F}_{m0} -valid

イロト イポト イヨト イヨト

E

Setup and Results Sample Splitting Application

Independent *P*-value Statistic

Definition: $P_{\Delta}(X) = (P_{\Delta m}(X), m \in \mathcal{M})$ is $\mathcal{F}_{\mathcal{M}0}$ -independent if for $t \in [0, 1]^M$ and $F \in \mathcal{F}_{\mathcal{M}0}$,

$$\Pr_{F}\left(\bigcap_{m\in\mathcal{M}}[P_{\Delta_{m}}(X)\leq t_{m}]\right)$$
$$=\Pr_{F}\left(\bigcap_{m\in\mathcal{M}_{1}}[P_{\Delta_{m}}(X)\leq t_{m}]\right)\prod_{m\in\mathcal{M}_{0}}\Pr_{F}(P_{\Delta_{m}}(X)\leq t_{m})$$

 Question: When will an MDP generate *F*_{M0}-independent *P*-value statistics?

Setup and Results Sample Splitting Application

Independence Theorem

Definition: Δ is $\mathcal{F}_{\mathcal{M}0}$ -independent if for $\boldsymbol{d} \in \{0, 1\}^M$, $\boldsymbol{\eta} \in [0, 1]^M$, and every $\boldsymbol{F} \in \mathcal{F}_{\mathcal{M}0}$,

$$\Pr_{F}\left(\bigcap_{m\in\mathcal{M}}[\delta_{m}(X;\eta_{m})=d_{m}]\right)$$
$$=\Pr_{F}\left(\bigcap_{m\in\mathcal{M}_{1}}[\delta_{m}(X;\eta_{m})=d_{m}]\right)\prod_{m\in\mathcal{M}_{0}}\Pr_{F}\left(\delta_{m}(X;\eta_{m})=d_{m}\right)$$

Theorem: $P_{\Delta}(X)$ is $\mathcal{F}_{\mathcal{M}0}$ -independent iff Δ is $\mathcal{F}_{\mathcal{M}0}$ independent

Proof follows by showing $I(P_{\Delta_m}(X) \leq t_m) = \delta_m(X; t_m)$ a.e. [F] $\forall F$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Setup and Results Sample Splitting Application

How can we define $\mathcal{F}_{\mathcal{M}0}\text{-independent}$ and valid compound decision processes?

Joshua D. Habiger *P*-Values for Multiple Testing Procedures

イロト イポト イヨト イヨト

Setup and Results Sample Splitting Application

The Idea

Consider testing

$$H_{m0}: X_m \sim N(0, 1)$$
 vs. $H_{1m}: X_m \sim N(\mu_m, 1), \mu_m \neq 0$

• The standard decision function is defined

$$\delta_m(X_m; .05) = I(X_m \le -1.96) + I(X_m \ge 1.96)$$

- Why not δ_m(X_m; .05) = I(X_m ≥ 1.645)?
 If μ_m > 0, NP test!
- We will split X = (X[, T], X[, T̄]) and use X[, T] to estimate μ_m and X[m, T̄] to test H_{m0}

イロト イポト イヨト イヨト

Setup and Results Sample Splitting Application

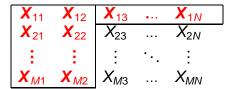
The Decision Function

• Consider compound decision functions $\delta_m : \mathcal{X} \to \{0, 1\}$ defined

 $\delta_m(X[, T], X[m, \overline{T}]; \eta)$

where $T \subset \mathcal{N}$ and $\overline{T} = \mathcal{N} \setminus T$

• Ex. $T = \{1, 2\}$, and $\delta_1(X[, T], X[1, \overline{T}]; \eta)$



Setup and Results Sample Splitting Application

The Example

• Suppose $X[, n] \stackrel{i.i.d}{\sim} F \in \mathcal{F} = \left\{ MVN\left(\frac{1}{N}\mu, \frac{1}{N}I\right) \right\}$

•
$$H_{m0}$$
 : $\mu_m = 0, F \in \mathcal{F}$ vs. H_{m1} : $\mu_m \neq 0, F \in \mathcal{F}$

• Considering *M* sufficient statistics for training data $-\sum_{n \in T} X[, n]$ - and test data $-\sum_{n \in \overline{T}} X[, n]$

$$\mathbf{X} \equiv \sum_{n \in \mathcal{N}} X[, n]$$
$$= \sum_{n \in T} X[, n] + \sum_{n \in \overline{T}} X[, n]$$
$$\equiv \mathbf{Y} + \mathbf{Z}$$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Setup and Results Sample Splitting Application

The Example Cont.

$$\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_M \end{bmatrix} \xrightarrow{\text{split}} \begin{bmatrix} Y_1 & Z_1 \\ Y_2 & Z_2 \\ \vdots & \vdots \\ Y_M & Z_M \end{bmatrix}$$

•
$$\boldsymbol{X} \sim MVN(\boldsymbol{\mu}, \boldsymbol{I}).$$

• $\boldsymbol{Y} \sim MVN(\lambda^2 \boldsymbol{\mu}, \lambda^2 \boldsymbol{I})$ and
 $\boldsymbol{Z} \sim MVN((1 - \lambda^2)\boldsymbol{\mu}, (1 - \lambda^2)\boldsymbol{I})$

• $\lambda^2 = \frac{|T|}{N}$ is proportion of training data

・ロト ・ 日 ト ・ ヨ ト ・

Setup and Results Sample Splitting Application

Simple and Compound Decision Functions

•
$$\delta_m^{(1)}(\mathbf{Y}_m, \mathbf{Z}_m; \eta) \equiv \delta_m^{(1)}(\mathbf{X}_m; \eta)$$
 - Simple
• $\delta_m^{(2)}(\mathbf{Y}, \mathbf{Z}_m; \eta)$ - Compound

• Ex. $\delta_1^{(1)}(\mathbf{Y}_1, \mathbf{Z}_1; \eta)$ vs. $\delta_1^{(2)}(\mathbf{Y}, \mathbf{Z}_1; \eta)$

$$\begin{bmatrix} \mathbf{Y}_1 & \mathbf{Z}_1 \\ \mathbf{Y}_2 & \mathbf{Z}_2 \\ \vdots & \vdots \\ \mathbf{Y}_M & \mathbf{Z}_M \end{bmatrix} \mathbf{vs.} \begin{bmatrix} \mathbf{Y}_1 & \mathbf{Z}_1 \\ \mathbf{Y}_2 & \mathbf{Z}_2 \\ \vdots & \vdots \\ \mathbf{Y}_M & \mathbf{Z}_M \end{bmatrix}$$

ヘロン 人間 とくほとくほとう

Setup and Results Sample Splitting Application

Evaluating MDPs

- Δ⁽¹⁾ and Δ⁽²⁾ should each be *F*_{M0}-size valid (and independent)
- Want to maximize power

$$\beta^{(1)}(\mu,\eta) = \sum_{m \in \mathcal{M}_1} \frac{\beta_m^{(1)}(\mu_m,\eta)}{M_1} \equiv \sum_{m \in \mathcal{M}_1} \frac{E_{\mu_m}[\delta_m^{(1)}(X_m;\eta)]}{M_1}$$
$$\beta^{(2)}(\mu,\lambda^2,\eta) = \sum_{m \in \mathcal{M}_1} \frac{\beta_m^{(2)}(\mu,\lambda^2,\eta)}{M_1} \equiv \sum_{m \in \mathcal{M}_1} \frac{E_{\mu}[\delta_m^{(2)}(\mathbf{Y},Z_m;\eta)]}{M_1}$$

イロト イポト イヨト イヨト

Setup and Results Sample Splitting Application

Gold Standard Decision Function

$$\delta_m^{(1)}(\boldsymbol{X}_m;\eta) = \boldsymbol{I}(\boldsymbol{X}_m \leq \boldsymbol{I}_m(\eta)) + \boldsymbol{I}(\boldsymbol{X}_m \geq \boldsymbol{u}_m(\eta))$$

• If $I_m(\eta) = \Phi^{-1}(\eta/2)$ and $u_m(\eta) = \Phi^{-1}(1 - \eta/2)$, then $E_{\mu_m=0}[\delta_m^{(1)}(X_m;\eta)] = \eta$

• Ex. *I*(.1) = -1.645 and *u*(.1) = 1.645

イロト イポト イヨト イヨト

Setup and Results Sample Splitting Application

Oracle Decision Function

- How would an Oracle, who knew μ_m, choose I_m(η) and u_m(η)?
 - Onstraint: Need to choose $I_m(\eta)$ and $u_m(\eta)$ s.t.

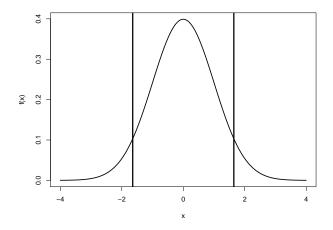
$$E_{\mu_m=0}[\delta_m^{(1)}(X_m;\eta)]=\eta$$

Maximize $\beta_m(\mu_m, \eta)$

・ロト ・四ト ・ヨト ・ヨト

Setup and Results Sample Splitting Application

Constraint

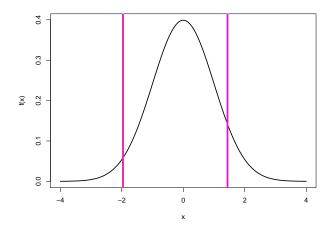


• Tail area is .1

・ロト ・ 四ト ・ ヨト ・ ヨト

Setup and Results Sample Splitting Application

Constraint

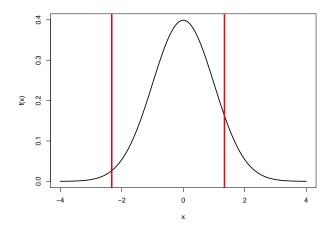


• Tail area is .1

・ロト ・ 四ト ・ ヨト ・ ヨト

Setup and Results Sample Splitting Application

Constraint

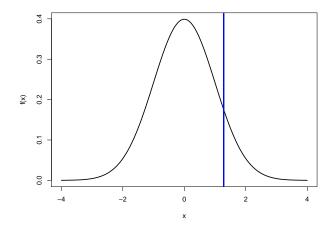


• Tail area is .1

・ロト ・ 四ト ・ ヨト ・ ヨト

Setup and Results Sample Splitting Application

Constraint



• Tail area is .1

・ロト ・ 四ト ・ ヨト ・ ヨト

Setup and Results Sample Splitting Application

Oracle Cutoffs

• Constraint corresponds to $\textbf{h}_{m} \in [0,1]$ for

•
$$l(\eta, h_m) = \Phi^{-1}(h_m \eta)$$

• $u(\eta, h_m) = \Phi^{-1}(1 - [1 - h_m]\eta)$

For

$$\delta_m^{(1)}(X_m;\eta,\boldsymbol{h_m}) = I(X_m \leq I(\eta,\boldsymbol{h_m})) + I(X_m \geq u(\eta,\boldsymbol{h_m})),$$

$$\beta_m^{(1)}(\mu_m,\eta,\boldsymbol{h_m}) = \Phi(\mu_m - I(\eta,\boldsymbol{h_m})) + 1 - \Phi(\mu_m - u(\eta,\boldsymbol{h_m}))$$

is maximized by choosing

$$m{h}_{m}(m{\mu}_{m}) = \left\{ egin{array}{ccc} 1 & ext{if } \mu_{m} < 0 & ext{(lower tailed test)} \\ 0 & ext{if } \mu_{m} > 0 & ext{(upper tailed test)} \end{array}
ight.$$

・ロト ・四ト ・ヨト ・ヨト

Setup and Results Sample Splitting Application

Estimating the Oracle Cutoffs

Theorem: Suppose that $((Y_m, Z_m); m \in \mathcal{M}_0)$ are independent and also independent of $((Y_m, Z_m); m \in \mathcal{M}_1)$. If for every $m \in \mathcal{M}_0$,

 $\boldsymbol{E}_{\boldsymbol{F}}[\delta_{m}(\boldsymbol{Y},\boldsymbol{Z}_{m};\eta_{m})|\boldsymbol{Y}]=\eta_{m}$

for every $F \in \mathcal{F}_{m0}$, then Δ is \mathcal{F}_{M0} -size valid and hence, $P_{\Delta}(\mathbf{Y}, \mathbf{Z})$ is \mathcal{F}_{M0} -uniform and independent.

Intuition: δ_m only depends on Z_m under H_{m0} and Z_m s are independent! Also, δ_m is size valid.

イロト イポト イヨト イヨト

Setup and Results Sample Splitting Application

Estimating the Oracle Cutoffs Cont.

• Estimate $h_m(\mu_m) = I(\mu_m < 0)$ with $h_m(\mathbf{Y}) \in [0, 1]$

$$\delta_m^{(2)}(\mathbf{Y}, \mathbf{Z}_m; \eta) = I\left(\frac{\mathbf{Z}_m}{\sqrt{1-\lambda^2}} \le I(h_m(\mathbf{Y}), \eta)\right) + I\left(\frac{\mathbf{Z}_m}{\sqrt{1-\lambda^2}} \ge u_m(h_m(\mathbf{Y}), \eta)\right)$$

Corollary: $\Delta^{(2)}$ is $\mathcal{F}_{\mathcal{M}0}$ -size-valid and independent for any \mathcal{M}_0 . Hence $P_{\Delta^{(2)}}$ is $\mathcal{F}_{\mathcal{M}0}$ -uniform and independent for any \mathcal{M}_0 .

• Intuition: The tail area is η for any $h_m(\mathbf{Y}) \in [0, 1]$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Setup and Results Sample Splitting Application

Estimating the Oracle Cutoffs Cont.

- How will we estimate $h_m(\mu_m) = I(\mu_m < 0)$ with $h_m(\mathbf{Y})$?
- Route: Use Empirical Bayes methods to develop shrinkage estimators
 - Specify prior for μ_m :

$$m{G}(\mu_{m}; heta, au)=\Phi\left(rac{\mu_{m}- heta}{ au}
ight)$$

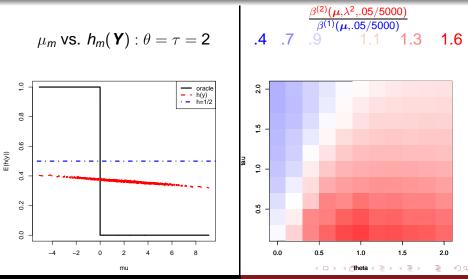
- 2 Compute $h_m(Y_m, \theta, \tau) = \Pr(\mu_m < 0; Y_m, \theta, \tau)$
- **Output** Plug in MOM estimates $\hat{\theta}(\mathbf{Y})$ and $\hat{\tau}(\mathbf{Y})$

イロト イポト イヨト イヨト

э

Setup and Results Sample Splitting Application

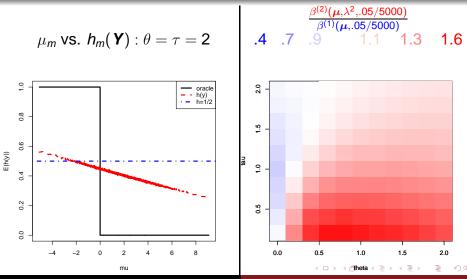
Performance: Train Prop. = .001



Joshua D. Habiger

Setup and Results Sample Splitting Application

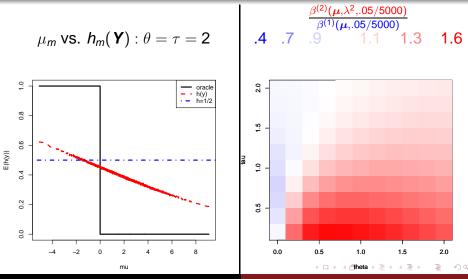
Performance: Train Prop. = .01



Joshua D. Habiger

Setup and Results Sample Splitting Application

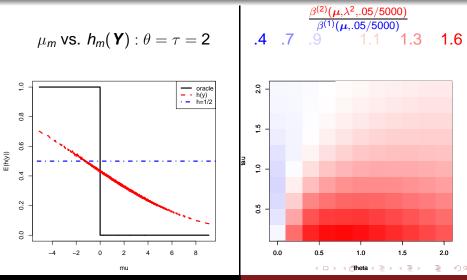
Performance: Train Prop. = .02



Joshua D. Habiger

Setup and Results Sample Splitting Application

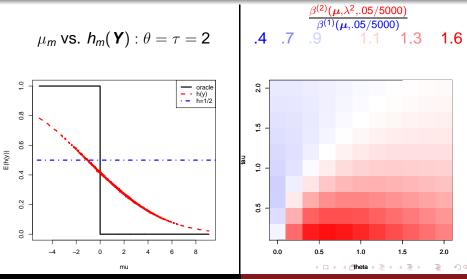
Performance: Train Prop. = .05



Joshua D. Habiger

Setup and Results Sample Splitting Application

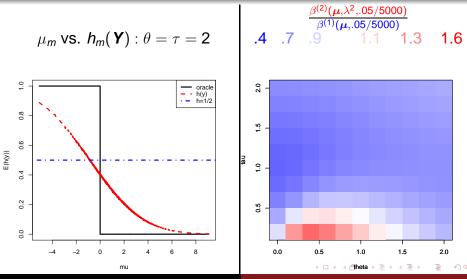
Performance: Train Prop. = .1



Joshua D. Habiger

Setup and Results Sample Splitting Application

Performance: Train Prop. = .2



Joshua D. Habiger

Setup and Results Sample Splitting Application

Splitting the sample

- Choice of λ^2
 - Larger λ^2 allows for better estimates of $h_m(\mu_m)$ but we have less test data
 - Smaller λ² yields worse estimates of h_m(μ_m) but we have more test data
 - We should choose .01 $<\lambda^2<.05$
- Caveats
 - If average signal is $\theta = 0$, simple δ_m is more powerful
 - Loss in power when $\theta = 0$ is small relative to gain in power when $\theta \neq 0$.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Setup and Results Sample Splitting Application

Prostate Cancer Data

	control group				cancer group			
	<i>x</i> [,1]	x [,2]		x [,50]	<i>x</i> [,51]	x [,52]		<i>x</i> [,102]
<i>x</i> [1,]	931	840		3.81	-1.12	1.01		001
x [2,]	-1.07	880		477	571	811		836
:	:	:	·	÷	÷	÷	·	÷
x [6033,]	754	708		011	.457	.578		162

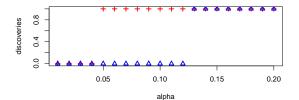
Joshua D. Habiger P-Values for Multiple Testing Procedures

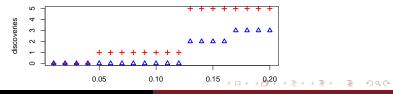
ヘロン 人間 とくほど 人間とし

Setup and Results Sample Splitting Application

Application to BH and Sidak

Sequential Sidak FWER method





Joshua D. Habiger *P*-Values for Multiple Testing Procedures

Setup and Results Sample Splitting Application

Some Remarks

- We allow for MTPs to depend upon *compound P*-values so the behave in a more efficient manner
- Sample splitting approach allows for MTPs to be valid, contrary to the double dipping approach in Sun and Cai [2007], Efron [2001,2004,2007,...]
- May be possible to use training data more efficiently. Choice of λ² will depend on h_m(Y)

(1日) (1日) (1日)

What have we done?

- There are many *P*-value based multiple testing procedures for controlling many different error rates
- Stochastic process approach allows for (possibly compound) *P*-values satisfying conditions allowing for valid MTPs
 - Robust
 - Efficient
- Methods can be broadly used to improve any *P*-Value based MTP

・ 同 ト ・ ヨ ト ・ ヨ ト

Future Work

- Can use sample splitting approach in other Oracle procedures - Peña et. al.
- Investigate other $h_m(Y)$
- Bayesian rather than Empirical Bayesian approach (specify G(μ_m) and study robustness)
- Simultaneous conf. intervals. For θ a parameter, the 1α interval is $A(X) = \{\theta \in \Theta : P(X|\theta) \ge \alpha\}$

Another Procedure

- Use all data to satisfy uniformity condition?
- Some Error rates *mFDR*, *EFP* don't require independence

Let
$$h_1(\mathbf{X}) = g(X_2, X_3, ..., X_M), \ h_2(\mathbf{X}) = g(X_1, X_3, ..., X_M), \ ...$$

$$\delta_1(\boldsymbol{X};\eta_m) = I\left(X_1 \leq \Phi^{-1}(h_1(\boldsymbol{X})\eta)\right) + I\left(X_1 \geq \Phi^{-1}(1 - [1 - h_1(\boldsymbol{X})]\eta_m)\right)$$

$$\delta_2(\boldsymbol{X};\eta_m) = I\left(X_2 \leq \Phi^{-1}(h_2(\boldsymbol{X})\eta)\right) + I\left(X_2 \geq \Phi^{-1}(1 - [1 - h_2(\boldsymbol{X})]\eta_m)\right)$$

.

イロト イポト イヨト イヨト

Another Procedure

- We chose $|T| = |T_1 \bigcup T_2| = 4$ in example
- Consider (unbiased) power estimate

$$\hat{\beta}_m = \frac{1}{\binom{50}{2}\binom{52}{2}} \sum_{T:|T_1|=|T_2|=2} \delta_m(x[, T], x[m, \bar{T}])$$

• Can simply report $\hat{\beta}_m$ s or even define $\delta_m^* = I(U_m \le \hat{\beta}_m)$ if you dare.

イロト イポト イヨト イヨト

Acknowledgements

- EPA
- NSF
- NIH
- Advisor
- Committee Members
- Department
- Kate

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

E