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1 Proofs of results in Section 3

Proof of Theorem 1. Setting up the Lagrangian

L(t, k) = π(t,p,γ)− k

[(∑
m∈M

tm

)
−Mt

]

and taking derivative with respect to tm and setting it equal to 0 yields equation (3). Now,

recall we denote the solution to equation (3) with respect to tm by tm(k/pm, γm) and observe

k 7→ tm(k/pm, γm) is continuous and strictly decreasing in k with limk→∞ tm(k/pm, γm) = 0

and limk↓0 tm(k/pm, γm) = 1 by (A1). Thus, t̄M(k,p,γ) = M−1
∑

m∈M tm(k/pm, γm) is

continuous and strictly decreasing in k with limk→∞ t̄M(k,p,γ) = 0 and limk↓0 t̄M(k,p,γ) =

1. Hence, there exists a unique k satisfying t̄M(k,p,γ) = t for any t ∈ (0, 1) and hence a

unique collection [tm(k/pm, γm),m ∈ M].
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To show that the solution is a maximum, it suffices to show that the sequence of the

determinants of the principal minors of the bordered hessian matrix, evaluated at the

solution, alternates in sign. The jth principle minor of the bordered Hessian matrix is

Hj =

 0 1T
j

1j Dj


where Dj is a j × j diagonal matrix with diagonal elements dm = π′′

γm(tm) and 1j is a

vector of 1s of length j. Note that dm < 0 at the solution due to (A1). Now, observe that

|H1| = −1 < 0 where | · | denotes the determinant, and for j ≥ 2, we have the recursive

relation

|Hj| = dj|Hj−1|+ (−1)j
j−1∏
m=1

(−dm). (S1)

Because dj < 0, for j an even (odd) integer each expression on the righthand side of equa-

tion (S1) is positive (negative). Hence {|Hj|, j = 1, 2, ...} alternates in sign. ∥

Proof of Theorem 2. Observe that F̃DPM(t(k,p,γ)) is continuous in k under (A1).

Hence, it suffices to show that F̃DPM(t(k,p,γ)) takes on values 0 and 1 − p(M) by the

Mean Value Theorem. We first show that

lim
k↓0

F̃DPM(t(k,p,γ)) ≥ 1− p(M).

Observe that (A1) implies tm ≤ πγm(tm) ≤ 1 for tm ∈ [0, 1] and hence

t̄M(k,p,γ) ≤ ḠM(t(k,p,γ)) ≤ M−1

[∑
m∈M

(1− pm)tm(k/pm, γm) + pm

]
. (S2)

The inequalities in (S2) imply

F̃DPM(t(k,p,γ)) =

∑
m∈M[1−Gm(tm(k/pm, γm))]∑

m∈M[1− tm(k/pm, γm)]

t̄M(k,p,γ)

ḠM(t(k,p,γ))

≥
∑

m∈M[1− pm][1− tm(k/pm, γm)]∑
m∈M[1− tm(k/pm, γm)]

t̄M(k,p,γ)

ḠM(t(k,p,γ))

≥
(
1− p(M)

) t̄M(k,p,γ)

ḠM(t(k,p,γ))
,
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which converges to 1− p(M) as k ↓ 0 if

t̄M(k,p,γ)

ḠM(t(k,p,γ))
→ 1 (S3)

as k ↓ 0. To verify (S3), observe that limk↓0 tm(k/pm, γm) = 1 by (A1) and hence

t̄M(k,p,γ) → 1 as k ↓ 0. This, along with the inequalities in (S2), imply ḠM(t(k,p,γ)) →

1 as k ↓ 0 and hence (S3) is satisfied.

Now if

lim
k→∞

t̄M(k,p,γ)

ḠM(t(k,p,γ))
= 0, (S4)

then by the first inequality in (S2) and the definition of F̃DPM(t(k,p,γ))

F̃DPM(t(k,p,γ)) ≤ t̄M(k,p,γ)

ḠM(t(k,p,γ))
→ 0

as k → ∞ and the proof would be complete. Hence, it suffices to show (S4). But because

tm(k/pm, γm) ↓ 0 as k → ∞ and π′
γm(tm) → ∞ as tm ↓ 0 by (A1), we have

πγm(tm(k/pm, γm))

tm(k/pm, γm)
→ ∞

as k → ∞ by Hôpital’s rule. Further for am, bm, m ∈ M any positive constants,∑
m∈M am∑
m∈M bm

=
∑
m∈M

am
bm

(
bm∑

m∈M bm

)
≥ min

{
am
bm

,m ∈ M
}
.

Hence,

A(k) ≡
∑

m∈M πγm(tm(k/pm, γm))∑
m∈M tm(k/pm, γm)

≥ min

{
πγm(tm(k/pm, γm))

tm(k/pm, γm)
,m ∈ M

}
→ ∞

as k → ∞ which implies

t̄M(k,p,γ)

ḠM(t(k,p,γ))
=

[∑
m∈M

(1− pm)tm(k/pm, γm)

t̄M(k,p,γ)
+

pmπγm(tm(k/pm, γm))

t̄M(k,p,γ)

]−1

≤
[
M(1− p(M)) +Mp(1)A(k)

]−1 → 0

as k → ∞, where p(1) ≡ min{p}. ∥
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2 Proofs of results in Section 5

Proof of Lemma 1. The proof combines techniques from the proofs of Theorem 3 in

Storey et al. (2004) and Theorem 9 in Peña et al. (2011). First, observe that because u = λ,

0 ≤ t̂λα ≤ λ by definition and that if t̂λα = 0 then FDR(t̂λαw) = 0 trivially. Let us focus

on the setting where 0 < t̂λα ≤ λ. By the definition of t̂λα, F̂DP
λ
(t̂λαw) ≤ α which gives

R(t̂λα) ≥ M̂0(λw)t̂λα/α by the definition of F̂DP
λ
(·). Hence,

FDR(t̂λαw) = E

[
V (t̂λαw)

R(t̂λαw)

]
≤ E

[
α

1

M̂0(λw)

V (t̂λαw)

t̂λα

]
(S5)

≤ E

[
α

M̂0(λw)

V (λw)

λ

]
, (S6)

where (S6) is established as follows. First, if t̂λα = λ, it is true trivially. Now suppose that

0 < t̂λα < λ. Define filtration Ft = σ{δ(sw), 0 < t ≤ s ≤ λ} and observe that t̂λα is a

stopping time with respect to Ft (with time running backwards). Further, for 0 < t ≤ λ,

V (tw)/t is a reverse martingale with respect to Ft. This can be verified by noting that for

0 < s ≤ t ≤ λ

E

[
V (sw)

s
|Ft

]
=

1

s

∑
m∈M0

E [δm(swm)|Ft]

=
1

s

∑
m∈M0

δm(twm)E[δm(swm)|δm(twm) = 1,Ft]

=
1

s

∑
m∈M0

δm(twm)E[δm(swm)|δm(twm) = 1]

=
1

s

∑
m∈M0

δm(twm)
swm

twm

=
∑

m∈M0

δm(twm)

t

=
V (tw)

t
,

where first equality follows by the definition of V (·) and the second is due to the fact that

δm(swm) = 0 if δm(twm) = 0 by the NS assumptions. The third equality is satisfied due

to (A3). The forth equality follows by the fact that Pr([δm(swm) = 1] ∩ [δm(twm) = 1]) =
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E[δm(swm)] = swm for m ∈ M0 and s ≤ λ under the NS assumptions and under (A2). The

forth and fifth equalities follow from some algebra and the definition of V (·), respectively.

Hence, by the law of iterated expectation and the Optional Stopping Theorem (Doob, 1953)

E

[
α

M̂0(λw)

V (t̂λαw)

t̂λα

]
= E

{
α

M̂0(λw)
E

[
V (t̂λαw)

t̂λα
|Fλ

]}

= E

[
α

M̂0(λw)

V (λw)

λ

]
.

Hence, we have established (S6).

Now, note that M − R(λw) = M0 − V (λw) + [M1 −
∑

M1
δm(λwm)] ≥ M0 − V (λw).

Further observe that V 7→ V (λw)/[M0 − V (λw) + 1] is convex. Hence, by Theorem 3 in

Hoeffding (1956) and with p = λw̄0

E

[
V (λw)

M0 − V (λw) + 1

]
≤

M0∑
k=0

k

M0 − k + 1

 M0

k

 pk(1− p)M0−k

=
p

1− p
(1− pM0).

The last equality follows from basic calculations. Thus,

E

[
α

1

M̂0(λw)

V (λw)

λ

]
= E

[
α

(1− λ)

M −R(λw) + 1

V (λw)

λ

]
≤ α

(1− λ)

λ
E

[
V (λw)

M0 − V (λw) + 1

]
= α

(1− λ)

λ

p

1− p
(1− pM0).

The result follows by plugging λw̄0 in for p in the last expression. ∥

Proof of Theorem 3. From Lemma 1 and because w̄0 ≤ w(M),

FDR(t̂λα∗w) ≤ α∗w̄0
1− λ

1− λw̄0

= α
w̄0

w(M)

1− λw(M)

1− λw̄0

≤ α.∥
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3 Proofs of results in Section 6

Before proving Theorem 4 the following Glivenko-Cantelli-type Lemma regarding the uni-

form convergence of the FDP estimators and the FDP is presented. For similar results in

the unweighted adaptive setting see Theorem 6 in Storey et al. (2004) or see the proof of

Theorem 2 in Genovese et al. (2006) for the weighted, but unadaptive, setting. See also

Finner et al. (2009); Fan et al. (2012) and references therein for additional results on almost

sure convergence of the FDP.

Lemma S1. Fix δ ∈ (0, u). Under (A2) and (A4) - (A6),

sup
δ≤t≤u

|F̂DP
0

M(twM)− FDP 0
∞(t)| → 0,

sup
δ≤t≤u

|F̂DP
λ

M(twM)− FDP λ
∞(t)| → 0,

and

sup
δ≤t≤u

|FDPM(twM)− FDP∞(t)| → 0

almost surely.

Proof. In what follows we denote max{R(twM), 1} by R(twM) for short. Observe R(twM)

is nondecreasing in t almost surely by the NS assumptions and G(t) is strictly increasing

in t for 0 ≤ t ≤ u by (A6). Hence, for any δ ∈ (0, u),

sup
δ≤t≤u

∣∣∣F̂DP
0

M(twM)− FDP 0
∞(t)

∣∣∣ = sup
δ≤t≤u

∣∣∣∣ t

R(twM)/M
− t

G(t)

∣∣∣∣
= sup

δ≤t≤u

∣∣∣∣t [G(t)−R(twM)/M ]

G(t)R(twM)/M

∣∣∣∣ ≤ supδ≤t≤u |G(t)−R(twM)/M |
G(δ)R(δwM)/M

→ 0

G(δ)2
= 0

almost surely, where the numerator converges to 0 by the Glivenko-Cantelli Theorem and

the denominator converges to G(δ)2 by (A4) and the Continuous Mapping Theorem.

As for the second claim, denote âλ0,M = M̂0(λMwM)/M and aλ0,∞ = [1−G(λ)]/[1− λ].
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Additionally observe

F̂DP
λ

M(twM) = âλ0,M F̂DP
0

M(tw) and FDP λ
∞(t) = aλ0,∞FDP 0

∞(t),

Then using the triangle inequality

sup
δ≤t≤u

∣∣∣F̂DP
λ

M(twM)− FDP λ
∞(t)

∣∣∣ = sup
δ≤t≤u

∣∣∣âλ0,M F̂DP
0

M(twM)− aλ0,∞FDP 0
∞(t)

∣∣∣
≤
∣∣âλ0,M − aλ0,∞

∣∣× sup
δ≤t≤u

∣∣∣F̂DP
0

M(twM)
∣∣∣+ aλ0,∞ × sup

δ≤t≤u

∣∣∣F̂DP
0

M(twM)− F̂DP
0

∞(t)
∣∣∣

< 2ϵ+ ϵ,

where the last inequality is satisfied for all large enough M for any ϵ > 0. To verify the last

inequality note that âλ0,M → aλ0,∞ almost surely by (A2), (A4) and the Continuous Mapping

Theorem, and hence |âλ0,M − aλ0,∞| < ϵ for all large enough M . Further, for all large enough

M ,

sup
δ≤t≤u

F̂DP
0

M(twM) < sup
δ≤t≤u

FDP 0
∞(t) + ϵ ≤ 2

by the first claim of the Lemma and (A6). Additionally, G(λ) ≥ λ by (A6) and consequently

aλ0,∞ ≤ 1. Lastly, supδ≤t≤u |F̂DP
0

M(twM) − FDP 0
∞(t)| < ϵ for all large enough M by the

first claim of the Lemma.

To prove the third claim, we first show that

sup
δ≤t≤u

|FDPM(twM)− FDP∞(t)|

≤ sup
δ≤t≤u

∣∣∣∣V (twM)

R(twM)
− a0µ0t

R(twM)/M

∣∣∣∣+ sup
δ≤t≤u

∣∣∣∣ a0µ0t

R(twM)/M
− a0µ0t

G(t)

∣∣∣∣
= sup

δ≤t≤u

M

R(tw)

∣∣∣∣V (twM)

M
− a0µ0t

∣∣∣∣ (S7)

+a0µ0 sup
δ≤t≤u

∣∣∣F̂DP
0

M(twM)− FDP 0
∞(t)

∣∣∣ . (S8)

The inequality is a consequence of the triangle inequality and the definitions of FDP∞(t)

and FDPM(twM). The expression in (S7) is verified by factoring out R(twM)/M in the

first expression on the previous line while the expression in (S8) follows from factoring

out a0µ0 in the second expression and by the definitions of F̂DP
0

M(twM) and FDP 0
∞(t).

Now, the quantity in (S8) converges to 0 almost surely because a0µ0 is bounded under
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(A5) and by the first claim of the Lemma. To show that the first expression converges

to 0 almost surely, first note for any t ∈ (δ, u], because R(twM) is nondecreasing in t,

R(twM)/M > G(δ/2) and hence that

M

R(twM)
<

1

G(δ/2)

for all large enough M . Hence, if

sup
δ≤t≤u

∣∣∣∣V (twM)

M
− a0µ0t

∣∣∣∣→ 0 (S9)

almost surely, then

sup
δ≤t≤u

M

R(tw)

∣∣∣∣V (twM)

M
− a0µ0t

∣∣∣∣ ≤ ϵ

G(δ/2)

for all large enough M and the proof would be completed since ϵ is arbitrary and δ is fixed.

To show (S9), first observe that E[V (twM)]/M0 = w̄0,M t under the NS conditions. Also

note that by the triangle inequality

sup
δ≤t≤u

∣∣∣∣V (twM)

M0

− µ0t

∣∣∣∣ ≤ sup
δ≤t≤u

∣∣∣∣V (twM)

M0

− w̄0,M t

∣∣∣∣+ sup
δ≤t≤u

|w̄0,M t− µ0t|

≤ sup
δ≤t≤u

∣∣∣∣V (twM)

M0

− w̄0,M t

∣∣∣∣+ u |w̄0,M − µ0| → 0

almost surely, where the first quantity converges to 0 by the Glivenko-Cantelli Theorem

and the second quantity converges to 0 because w̄0,M → µ0 almost surely under (A5) and

because u ≤ 1. Thus, again using the triangle inequality

sup
δ≤t≤u

∣∣∣∣V (twM)

M
− a0µ0t

∣∣∣∣ = sup
δ≤t≤u

∣∣∣∣V (twM)

M0

[
M0

M
+ a0 − a0

]
− a0µ0t

∣∣∣∣
≤
∣∣∣∣M0

M
− a0

∣∣∣∣ sup
δ≤t≤u

∣∣∣∣V (twM)

M0

∣∣∣∣+ a0 sup
δ≤t≤u

∣∣∣∣V (twM)

M0

− µ0t

∣∣∣∣→ 0

almost surely, where the first quantity converges to 0 because M0/M → a0 almost surely

under (A5) and because V (twM)/M0 ≤ 1, while the second quantity converges to 0 because

a0 ≤ 1 and V (twM)/M0 → µ0t. Hence we have established (S9).

Proof of Theorem 4. Let us first focus on the equalities. Suppose that t0α,∞ < u. Then

FDP 0
∞(t0α,∞) = α by the definition of t0α,∞ and by (A6). Additionally due to (A6), for any
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ϵ > 0 there exists a 0 < δ < ϵ such that

FDP 0
∞(t0α,∞ + δ) < α+ ϵ.

Now, Lemma S1 gives F̂DP
0

M(twM) < FDP 0
∞(t0α,∞ + δ) for 0 ≤ t < t0α,∞ + δ and all large

enough M . Hence, this and (A6) imply

t̂0α,M = sup
[
0 ≤ t ≤ u : F̂DP

0

M(twM) ≤ α
]
≤ t0α,∞ + δ < t0α,∞ + ϵ

for all large enough M . Similar arguments give t̂0α,M > t0α,∞ − ϵ for all large enough M .

Now if t0α,∞ = u then

t0α,∞ − ϵ ≤ t̂0α,M ≤ t0α,∞ = u

for all large enough M . Hence, |t̂0α,M − t0α,∞| < ϵ for all large enough M and we conclude

t̂0α,M → t0α,∞ almost surely. As for the second equality, FDP λ
∞(t) = aλ0,∞FDP 0

∞(t) is

also continuous and strictly increasing by (A6) and consequently identical argument apply.

Thus t̂λα,M → tλα,∞ almost surely.

As for the inequality, note that (A6) implies λ ≤ G(λ) which implies

aλ0,∞ =
1−G(λ)

1− λ
≤ 1. (S10)

Hence,

FDP λ
∞(t) = aλ0,∞FDP 0

∞(t) ≤ FDP 0
∞(t) (S11)

for every t ∈ (0, u]. This, (A6) and the definitions of FDP 0
∞(·), t0α,∞ and tλα,∞ imply

t0α,∞ ≤ tλα,∞. ∥

Proof of Theorem 5. By Lemma S1 and (A6), for 0 < s < t ≤ u

FDPM(twM)− FDPM(swM) >

a0µ0t/G(t)− a0µ0s/G(s)− 2 sup
0≤t≤u

|FDPM(twM)− a0µ0t/G(t)|

→ a0µ0[t/G(t)− s/G(s)] > 0
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almost surely. Claim (C1) is then a consequence of Theorem 4 and the Continuous Mapping

Theorem. To verify Claims (C2) and (C3), first observe that by the triangle inequality

|FDPM(t̂λα,MwM)− FDP∞(tλα,∞)|

≤ |FDPM(t̂λα,MwM)− FDP∞(t̂λα,M)|+ |FDP∞(t̂λα,M)− FDP∞(tλα,∞)|.

The first quantity converges to 0 almost surely by Lemma S1 and the second quantity

converges to 0 almost surely by Theorem 4 and the Continuous Mapping Theorem. Hence,

FDPM(t̂λα,MwM) → FDP∞(tλα,∞) almost surely. Thus to prove Claims (C2) and (C3)

it suffices to show that FDP∞(tλα,∞) ≤ α if µ0 ≤ 1, with equality when G(t) is a DU

distribution with µ0 = 1 and FDP λ
∞(u) ≥ α. To show this, consider the following:

FDP∞(tλα,∞) = a0µ0

tλα,∞
G(tλα,∞)

≤ a0
tλα,∞

G(tλα,∞)

≤ 1−G(λ)

1− λ

tλα,∞
G(tλα,∞)

= FDP λ
∞(tλα,∞)

≤ α.

The first equality is due to the definition of FDP∞(·). The first inequality is satisfied

when µ0 ≤ 1 and is an equality when µ0 = 1. As for the second inequality, note that

G(λ) ≤ a0λ+ 1− a0 when µ0 ≤ 1 and G(λ) = a0λ+ 1− a0 under a DU distribution with

µ0 = 1. Consequently

a0 =
1− [a0λ+ 1− a0]

1− λ
≤ 1−G(λ)

1− λ

when µ0 ≤ 1 and the inequality is an equality when G is a DU distribution with µ0 = 1.

The last equality is satisfied by the definition of FDP λ
∞(·). The last inequality is satisfied

by the definition of tλα,∞ and is an equality when G is a DU distribution with µ0 = 1

and FDP∞(u) ≥ α because these conditions imply FDP∞(u) = FDP λ
∞(u) ≥ α. That is,

FDP∞(u) is continuous and monotone and takes on value α. Hence, FDP∞(tλα,∞) ≤ α if

µ0 ≤ 1 with equality if G is a DU distribution with µ0 = 1 and FDP∞(u) ≥ α. ∥
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Proof of Theorem 6. Under the conditions of the theorem

Cov(Wm,M , θm,M) = E[Wm,M |θm,M = 1]E[θm,M ]− E[Wm,M ]E[θm,M ]

= E[θm,M ](E[Wm,M |θm,M = 1]− 1).

Hence, Cov(Wm,M , θm,M) ≥ 0 implies E[Wm,M |θm,M = 1] ≥ 1 and consequentlyE[Wm,M |θm,M =

0] ≤ 1, with equality if Cov(Wm,M , θm,M) = 0. Hence E[W̄0,M |θM ̸= 1M ] = µ0 ≤ 1 with

equality if Cov(Wm,M , θm,M) = 0. The result follows because W̄0,M → µ0 almost surely. ∥

Proof of Corollary 1. Observe that u = 1 and λ < 1 is fixed. Hence (A2) is sat-

isfied and (A4) - (A6) are satisfied by the conditions of the Theorem. Therefore Claim

(C1) holds by Theorem 5. Now, additionally note that µ0 = 1 if wM = 1M and that

FDP∞(1) = a0 ≥ α under the conditions of the Theorem. Thus Claims (C2) and (C3)

hold by Theorem 5. ∥

Before proving Theorem 7 we provide Lemma S2. It will be used to verify that opti-

mal weights are weakly dependent so that decision functions satisfy the weak dependence

structure defined in (A4) - (A5). Below, denote t0(k) = E[tm(k/pm, γm)] and denote

G(t0(k)) = E[δm(tm(k/pm, γm))], where the expectations are taken over all random quan-

tities, i.e. over (Zm, θm, pm, γm) for some fixed k > 0. Further, define

F̃DP∞(t0(k)) =
1−G(t0(k))

1− t0(k)

t0(k)

G(t0(k))

and

k∗ = inf{k : F̃DP∞(t0(k)) = α},

and denote

w̃m,∞(k∗, pm, γm) = Umtm(k
∗/pm, γm)/t0(k

∗).

Lemma S2. Suppose that Pr(pm ≤ 1 − α). Under Model 1 and (A1), k∗
M → k∗ almost

surely and

w̃m,M(k∗
M ,p,γ) → w̃m,∞(k∗, pm, γm)

11



almost surely.

Proof. Note that 0 < α ≤ 1 − p(M) with probability 1 so that k∗
M is well defined for

M = 1, 2, ... by Theorem 2. Further, observe that tm(k
∗/pm, γm), m = 1, 2, ... are i.i.d.

continuous random variables taking values in [0, 1] under Model 1. Hence, by the Strong

Law of Large numbers t̄M(k∗,p,γ) → t0(k
∗) almost surely. Likewise, ḠM(t(k∗,p,γ) →

G(t0(k
∗)) almost surely and by the Continuous Mapping Theorem

F̃DPM(t(k∗,p,γ)) → F̃DP∞(t0(k
∗))

almost surely. Because further F̃DPM(t(k,p,γ)) and F̃DP∞(t0(k)) are both continuous

in k by (A1), we have from the Continuous Mapping Theorem and the definitions of k∗
M

and k∗ that k∗
M → k∗ almost surely. Thus,

w̃m,M(k∗
M ,p,γ) = Umwm,M(k∗

M ,p,γ)

= Um
tm(k

∗
M/pm, γm)

t̄M(k∗
M ,p,γ)

→ Um
tm(k

∗/pm, γm)

t0(k∗)
= w̃m,∞(k∗, pm, γm)

almost surely by the Continuous Mapping Theorem.

Proof of Theorem 7. First we verify (A2). Observe λM = t̄M(k∗
M ,p,γ) → t0(k

∗) almost

surely by the Strong Law of Large Numbers and the Continuous Mapping Theorem, where

recall t0(k
∗) = E[tm(k

∗/pm, γm)]. Thus, by the definition of w̃m,M

lim
M→∞

w̃m,M = lim
M→∞

Umtm,M(k∗
M/pm, γm)

t̄M(k∗
M ,p,γ)

≤ 1

t0(k∗)

almost surely, where the last inequality is due to the Continuous Mapping Theorem, Lemma

(S2) and because Umtm(k
∗
M ,p,γ) ≤ 1 almost surely by construction. That is, (A2) is

satisfied with λ = u = 1/t0(k
∗).

Before verifying (A4) - (A6) we introduce some notation. Denote

Gk∗(t) = E[δm(tw̃m,∞(k∗, pm, γm))]

12



where the expectation is taken over all random quantities, i.e. taken over (Zm, θm, pm, γm, Um).

Further we sometimes suppress p and γ and write w̃m,∞(k∗) = w̃m,∞(k∗, pm, γm), w̃m,M(k∗) =

w̃m,M(k∗,p,γ) and w̃M(k∗) = [w̃m,M(k∗),m ∈ M]. Further, denote w̃∞(k∗) = [w̃m,∞(k∗),m ∈

M].

Now consider (A4). Observe that δm(tw̃m,∞(k∗)),m = 1, 2, ... are i.i.d. Bernoulli random

variables with success probability Gk∗(t) under Model 1 so that

R(tw̃∞(k∗))

M
=

∑
m∈M δm(tw̃m,∞(k∗))

M
→ Gk∗(t)

almost surely by the Strong Law of Large Numbers. Further, by the NS assumptions,

Lemma S2, and because Gk∗(t) is continuous, we have that for any ϵ > 0 there exists an

ϵ′ > 0 such that

R(tw̃M(k∗
M))

M
=

∑
m∈M δm(tw̃m,M(k∗

M))

M
<

∑
m∈M δm(t[w̃m,∞(k∗) + ϵ′])

M

< Gk∗(t+ tϵ′) < Gk∗(t) + ϵ

for all large enough M . Similar arguments give

R(tw̃M(k∗
M))

M
> Gk∗(t)− ϵ

for all large enough M . Hence, R(tw̃M(k∗))/M → Gk∗(t) almost surely. Then because

k∗
M → k∗ almost surely by Lemma S2, R(tw̃M(k∗

M))/M → Gk∗(t) almost surely by the

Continuous Mapping Theorem.

As for (A5), recall the NS conditions give E[δm(tm)|θm = 0] = tm. Hence, taking the

expectation over all random quantities, we have by the law of iterated expectation

E[(1− θm)δm(tw̃m,∞(k∗, pm, γm))] = a0µ0t,

where a0 = E[1 − θm] and µ0 = E[w̃m,∞(k∗, pm, γm)|θm = 0]. Then, arguments akin to

those in the proof of (A4) give

V (tw̃M(k∗
M))

M
=

M0

M

V (tw̃M(k∗
M))

M0

→ a0µ0t

13



almost surely.

For (A6), first observe that Gk∗(t) = a0µ0t+ (1− a0)G1(t) for t ≤ u, where

G1(t) = E [πγm(tw̃m,∞(k∗, pm, γm))]

and the expectation is taken over all random quantities. Clearly t 7→ G1(t) is concave and

twice differentiable because t 7→ πγm(t) is twice differentiable almost surely by (A1). To

see that t/G(t) → 0 as t ↓ 0 note that G′
1(t) → ∞ as t ↓ 0 because π′

γm(t) → ∞ as t ↓ 0

almost surely by (A1). Hence,

t

Gk∗(t)
=

t

a0µ0t+ (1− a0)G1(t)
→ 0

as t ↓ 0 by an application of Hôptial’s rule. Clearly, limt↑u t/G
k∗(t) → u/Gk∗(u) because

Gk∗(t) is continuous. To see that u/Gk∗(u) ≤ 1 we establish the following:

Gk∗(u) = E[δm(uw̃m,∞(k∗))]

= a0E[δm(uw̃m,∞(k∗))|θm = 0]

+(1− a0)E[δm(uw̃m,∞(k∗))|θm = 1]

= a0E[uw̃m,∞(k∗)] + (1− a0)E[πγm(uw̃m,∞(k∗))]

≥ a0E[uw̃m,∞(k∗)] + (1− a0)E[uw̃m,∞(k∗)]

= E[uw̃m,∞(k∗)]

= uE[w̃m,∞(k∗)] = u.

The first equality is by the definition of Gk∗(u) while the second equality is due to the

law of iterated expectation. The third is a consequence of the definition of πγm(t) and the

NS assumptions. The inequality is satisfied because πγm(t) ≥ t almost surely for every

t ∈ [0, 1] under (A1). The forth equality is obvious. As for the fifth, recall E[Um|pm, γm] =

1, w̃m,∞(k∗) = Umwm,∞(k∗) and that E[wm,∞(k∗)] = 1. Hence, by the law of iterated

expectation E[w̃m,∞(k∗)] = E[wm,∞(k∗)] = 1.

To verify that µ0 ≤ 1 we make use of Theorem 6 and write Wm = wm,M(k∗
M ,p,γ) and

W̃m = UmWm for short. First let us focus on Cov(Wm, θm). From the law of iterated

14



expectation,

Cov(Wm, θm) = E[Cov(Wm, θm|pm)] + Cov(E[Wm|pm], pm). (S12)

Observe that

Cov(Wm, θm|pm) = E[Wmθm|pm]− E[Wm|pm]E[θm|pm]

= pmE[Wm|pm]− pmE[Wm|pm] = 0

which implies that the first expectation in (S12) is 0. To compute the second expecta-

tion, first observe π′
γm(tm) is continuous and strictly decreasing and hence the solution to

π′
γm(tm) = a, denoted tm(a, γm), is continuous and strictly decreasing in a almost surely

by (A1). Hence tm(k
∗
M/pm, γm) is strictly increasing and continuous in pm almost surely.

Thus,

E[Wm|p,γ] = E

[
M

tm(k
∗
M/pm, γm)

tm(k∗
M/pm, γm) +

∑
j ̸=m tj(k∗

M/pj, γj)

∣∣∣∣p,γ
]

is also increasing in pm almost surely because the function x/(x + a) for a any positive

constant is increasing in x for x > 0. This implies E[Wm|pm] is also increasing in pm

almost surley which implies Cov(E[Wm|pm], pm) ≥ 0. As for W̃m = UmWm,

Cov(W̃m, θm) = E[Cov(UmWm, θm|Wm)] + Cov(E[UmWm|Wm], E[θm|Wm])

by the law of iterated expectation. But

E[Cov(UmWm, θm|Wm)] = E[WmCov(Um, θm|Wm)] = 0

because Cov(Um, θm|Wm) is 0 by construction. Additionally,

Cov(E[UmWm|Wm], E[θm|Wm]) = Cov(Wm, E[θm|Wm]) ≥ 0

because Cov(Wm, θm) ≥ 0. Hence, Cov(W̃m, θm) ≥ 0 and thus, by Theorem 6, µ0 ≤ 1. ∥

Proof of Theorem 8. First recall from the proof of Theorem 7 (where here we take
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Um = 1 almost surely for every m) that λM = t̄M(k∗
M) → t0(k

∗) Hence, we have

FDP λ
∞(t) =

1−Gk∗(t0(k
∗))

1− t0(k∗)

t

Gk∗(t)
.

Further observe that because t/Gk∗(t) is strictly increasing by (A6), then t0(k
∗) = tλα,∞ by

the definition of tλα,∞. Hence t̄M(k∗
M) → t0(k

∗) = tλα,∞ almost surely. ∥

Proof of Corollary 2 First observe that Cov(wm,M , θm,M) = 0 and hence µ0 = 1 by

Theorem 6. It therefore suffices to show that (A4) - (A6) are satisfied. But δm(twm,M),

m = 1, 2, ... are i.i.d. Bernoulli random variables under Model 1 and the conditions of

the Theorem. Hence, R(twM)/M → G(t) for G(t) = E[δm(twm,M)] almost surely by

the Strong Law of Large Numbers and (A4) is satisfied. Likewise (1 − θm,M)δm(twm,M),

m = 1, 2, ... are i.i.d. random variable with mean a0t under the NS assumptions and the

conditions of the Theorem. Hence,

V (twM)

M
=

1

M

∑
m∈M

(1− θm,M)δm(twm,M) → a0t

almost surely by the Strong Law of Large Numbers and (A5) is satisfied. Condition (A6) is

verified using arguments identical to those used in verifying (A6) in the proof of Theorem

7 with Gk∗(t) = G(t) and wm,M = w̃m,∞(k∗). ∥

Proof of Corollary 3. Observe that π(t,p,γ) is proportional to π(t,1,γ) and hence

the maximization of π(t,p,γ) with respect to t is free of pm. Thus w̃m,M(k,p,γ) is inde-

pendent of pm and hence independent of θm. The result then follows from Theorems 6 and

7. ∥

4 Simulation details

4.1 Simulations 1 - 4

In Simulation 1, observe that the FDP is increasing in a for both adaptive procedures. For

example the FDP of each procedure is 0.021 when a = 1 but is 0.039 when a = 5. This
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Table 1: The average CDP (FDP) for the UU, UA, WU, and WA procedures in Simulations
1 - 4.

Simulation 1 Simulation 2
a a

1 3 5 1 3 5
UU 0.007(0.021) 0.390(0.025) 0.709(0.025) 0.007(0.024) 0.390(0.025) 0.709(0.025)
WU 0.007(0.021) 0.397(0.025) 0.731(0.025) 0.011(0.008) 0.434(0.014) 0.756(0.016)
UA 0.007(0.021) 0.437(0.031) 0.761(0.039) 0.007(0.024) 0.430(0.031) 0.761(0.041)
WA 0.007(0.021) 0.442(0.032) 0.793(0.039) 0.011(0.008) 0.473(0.018) 0.814(0.026)

Simulation 3 Simulation 4
a a

1 3 5 1 3 5
UU 0.007(0.023) 0.391(0.025) 0.709(0.025) 0.007(0.025) 0.391(0.025) 0.710(0.025)
WU 0.013(0.007) 0.404(0.015) 0.719(0.016) 0.006(0.023) 0.354(0.025) 0.682(0.025)
UA 0.007(0.023) 0.430(0.031) 0.757(0.039) 0.007(0.025) 0.425(0.030) 0.756(0.039)
WA 0.013(0.007) 0.439(0.019) 0.774(0.027) 0.006(0.023) 0.387(0.030) 0.727(0.039)

is to be expected as both adaptive procedures are α-exhaustive (see Corollaries 1 and 3)

and hence we should expect the FDP to be near 0.05 in high power settings, i.e. for large

a. Additionally, the largest gain in power (in terms of the average CDP) of the weighted

adaptive procedure over the unweighted adaptive procedure occurs when effect sizes are

most heterogeneous. When a = 5 the average CDP of the WA procedure is 0.793 while

the average CDP of the UA procedure is 0.761. When data are homogeneous (a = 1), the

CDPs of the procedures are identical.

In Simulation 2, data generating mechanisms are even more heterogeneous as now the

pms also vary. General conclusions regarding the CDP are the same, with the advantages

of the weighted procedures over their unweighted counterparts being more pronounced.

For example, the average CDP of the WAMDF for γm
i.i.d.∼ Un(1, 5) increased from 0.793

to 0.814 when allowing pms to vary, while for the UA procedure the CDP is still 0.761.

We also observe that for a = 5 the average FDP of the WA procedure is only 0.026 while

the average FDP of the UA procedure is closer to 0.05; it is 0.039. This is to be expected

because, even though the WAMDF will dominate the UA procedure in terms of the average

CDP, the UA procedure is α-exhaustive while the WAMDF need not be in this setting.

Now consider non-optimal weights in Simulations 3 and 4. Roeder and Wasserman

(2009) concluded that, in the unadaptive setting (the UU and WU procedures), weighted

MDFs are robust with respect to weight misspecification in that they generally yield about

as many or more rejected null hypotheses as unweighted procedures as long as weights

are “reasonably guessed” and yield slightly less rejected null hypotheses when weights are

poorly guessed. Simulations 3 and 4 confirm their results and further illustrates that the ro-
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bustness property applies to adaptive procedures. For example, comparing the unadaptive

procedures in Simulation 3, we see that the average CDP of the WU(UU) procedures are

0.013(0.007), 0.404(0.391), and 0.719(0.709) for a = 1, 3, 5, respectively. The average CDP

of the WA(UA) procedure is 0.013(0.007), 0.439(0.430), and 0.774(0.757), for a = 1, 3, 5,

respectively. That is, when weights are positively correlated with optimal weights, weighted

procedures still perform slightly better than their unweighted counterparts. In the worst

case scenario setting in Simulation 4, where weights are independently generated, the FDP

is still controlled by the WA procedure, but some loss in power over its unweighted coun-

terpart is observed. For example, the CDP of the WA(UA) procedure is 0.006(0.007),

0.386(0.425), and 0.727(0.756) when γ = 1, 3, and 5, respectively, while the average FDP

of the WA(UA) procedure is 0.025(0.023), 0.030(0.030), and 0.039(0.039) when γ = 1, 3,

and 5, respectively.

4.2 Simulation 5

The average CDP ratio (weighted/unweighted) vs. the average CDP of the weighted pro-

cedure is depicted in Figure S1 for all settings. Observe that the CDP ratio is greater than

or equal to 1 for each value of p and α as long as the CDP is at least 0.2.
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Figure S1: The ratio of the average CDP (weighted/unweighted) vs. the average CDP of
the weighted procedure for p = 0.2(o), p = 0.5(△), and p = 0.8(+) for γ̄ = 1.75, 2, 2.25.
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